翻訳と辞書
Words near each other
・ Kanwaljit Singh (politician)
・ Kanwaljit Soin
・ Kanwar Arsalan
・ Kantonsschule Küsnacht
・ Kantonsschule Rämibühl
・ Kantonsschule Solothurn
・ Kantonsschule Uster
・ Kantonsschule Zürcher Unterland
・ Kantonsschule Zürich Nord
・ Kantonsspital St. Gallen
・ Kantor
・ Kantor (surname)
・ Kantor Berita Radio 68H
・ Kantor double
・ Kantora District
Kantorovich inequality
・ Kantorovich theorem
・ Kantorowice
・ Kantorowice, Opole Voivodeship
・ Kantorowicz
・ Kantorówka
・ Kantor–Koecher–Tits construction
・ Kantosi language
・ Kantou
・ Kantou, Cyprus
・ Kantoumania
・ Kantowo
・ Kantowski-Sachs metric
・ Kantox
・ Kantragada


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kantorovich inequality : ウィキペディア英語版
Kantorovich inequality
In mathematics, the Kantorovich inequality is a particular case of the Cauchy-Schwarz inequality, which is itself a generalization of the triangle inequality.
The triangle inequality states that the length of two sides of any triangle, added together, will be equal to or greater than the length of the third side. In simplest terms, the Kantorovich inequality translates the basic idea of the triangle inequality into the terms and notational conventions of linear programming. (See vector space, inner product, and normed vector space for other examples of how the basic ideas inherent in the triangle inequality--line segment and distance--can be generalized into a broader context.)
More formally, the Kantorovich inequality can be expressed this way:
:Let
:: p_i \geq 0,\quad 0 < a \leq x_i \leq b\texti=1, \dots ,n.

:Let A_n=\.

:Then

::
\begin
& ^n \frac \right) \\
& \leq \frac \left (\sum_^n p_i \right )^2
-\frac \cdot \min \left\p_j \right )^2\,:\, , \right\}.
\end

The Kantorovich inequality is used in convergence analysis; it bounds the convergence rate of Cauchy's steepest descent.
Equivalents of the Kantorovich inequality have arisen in a number of different fields. For instance, the Bunyakovsky inequality, the Wielandt inequality, and the Cauchy–Schwarz inequality are equivalent to the Kantorovich inequality and all of these are, in turn, special cases of the Hölder inequality.
The Kantorovich inequality is named after Soviet economist, mathematician, and Nobel Prize winner Leonid Kantorovich, a pioneer in the field of linear programming.
There is also Matrix version of the Kantrovich inequality due to Marshall and Olkin.
==References==

*
*
* (Mathematical Programming Glossary entry on "Kantorovich inequality" )
* MARSHALL A. W. and OLKIN, I., Matrix versions of the Cauchy and Kantorovieh inequatities. Aequationes Math. 40 (1990), pp.
89-93.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kantorovich inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.